Slow filament dynamics and viscoelasticity in entangled and active actin networks.
نویسندگان
چکیده
This paper deals with correlations between the viscoelastic impedance of entangled actin networks and the slow conformational dynamics and diffusive motions of single filaments. The single filament dynamics is visualized and analysed by analysing the Brownian motion of attached colloidal beads, which enables independent measurements of characteristic viscoelastic response times such as the entanglement and reptation times. We further studied the frequency-dependent viscoelastic impedance of active actin-heavy-meromyosin II networks by magnetic-tweezers microrheometry to gain insight into the effect of such highly dynamic and force-generating crosslinkers (exhibiting bond lifetimes of less than 1 s) on the rheological properties. We show that at high frequencies (higher than 1 Hz) the viscoelastic loss modulus is slightly increased relative to the entangled network (associated with an increase in the energy dissipated during mechanical excitations), while at low frequencies the plateau of the impedance spectrum becomes more pronounced as a consequence of the cross-linking of the network and the suppression of the terminal regime. Our data provide evidence that the myosin motor protein may play a role as softener of the actin cortex, enabling the adaptive reduction of the yield stress of cells and thus facilitating cellular deformations.
منابع مشابه
Microrheology of entangled F-actin solutions.
We measure the viscoelasticity of entangled F-actin over length scales between 1 and 100 microm using one- and two-particle microrheology, and directly identify two distinct microscopic contributions to the elasticity. Filament entanglements lead to a frequency-independent elastic modulus over an extended frequency range of 0.01-30 rad/sec; this is probed with one-particle microrheology. Longit...
متن کاملAnomalous diffusion probes microstructure dynamics of entangled F-actin networks.
We study the thermal motion of colloidal tracer particles in entangled actin filament (F-actin) networks, where the particle radius is comparable to the mesh size of the F-actin network. In this regime, the ensemble-averaged mean-squared displacement of the particles is proportional to tau(gamma), where 0<gamma<1 from 0.1<tau<100 s and depends only on the ratio of the probe radius to mesh size....
متن کاملNonlinear Actin Deformations Lead to Network Stiffening, Yielding, and Nonuniform Stress Propagation.
We use optical tweezers microrheology and fluorescence microscopy to apply nonlinear microscale strains to entangled and cross-linked actin networks, and measure the resulting stress and actin filament deformations. We couple nonlinear stress response and relaxation to the velocities and displacements of individual fluorescent-labeled actin segments, at varying times throughout the strain and v...
متن کاملPassive and active microrheology for cross-linked F-actin networks in vitro.
Actin filament (F-actin) is one of the dominant structural constituents in the cytoskeleton. Orchestrated by various actin-binding proteins (ABPs), F-actin is assembled into higher-order structures such as bundles and networks that provide mechanical support for the cell and play important roles in numerous cellular processes. Although mechanical properties of F-actin networks have been extensi...
متن کاملScaling of F-actin network rheology to probe single filament elasticity and dynamics.
The linear and nonlinear viscoelastic response of networks of cross-linked and bundled cytoskeletal filaments demonstrates remarkable scaling with both frequency and applied prestress, which helps elucidate the origins of the viscoelasticity. The frequency dependence of the shear modulus reflects the underlying single-filament relaxation dynamics for 0.1-10 rad/sec. Moreover, the nonlinear stra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 361 1805 شماره
صفحات -
تاریخ انتشار 2003